1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
| import tensorflow as tf from tensorflow.keras import layers, optimizers, datasets, Sequential import os import ssl ssl._create_default_https_context = ssl._create_unverified_context
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
tf.random.set_seed(2345)
conv_layers = [ layers.Conv2D(64, kernel_size=[3, 3], padding="same", activation=tf.nn.relu), layers.Conv2D(64, kernel_size=[3, 3], padding="same", activation=tf.nn.relu), layers.MaxPool2D(pool_size=[2, 2], strides=2, padding="same"),
layers.Conv2D(128, kernel_size=[3, 3], padding="same", activation=tf.nn.relu), layers.Conv2D(128, kernel_size=[3, 3], padding="same", activation=tf.nn.relu), layers.MaxPool2D(pool_size=[2, 2], strides=2, padding="same"),
layers.Conv2D(256, kernel_size=[3, 3], padding="same", activation=tf.nn.relu), layers.Conv2D(256, kernel_size=[3, 3], padding="same", activation=tf.nn.relu), layers.MaxPool2D(pool_size=[2, 2], strides=2, padding="same"),
layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu), layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu), layers.MaxPool2D(pool_size=[2, 2], strides=2, padding="same"),
layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu), layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu), layers.MaxPool2D(pool_size=[2, 2], strides=2, padding="same"), ]
def preprocess(x, y): x = tf.cast(x, dtype=tf.float32) / 255. y = tf.cast(y, dtype=tf.int32) return x, y
(x, y), (x_test, y_test) = datasets.cifar100.load_data() y = tf.squeeze(y, axis=1) y_test = tf.squeeze(y_test, axis=1) print(x.shape, y.shape, x_test.shape, y_test.shape)
train_db = tf.data.Dataset.from_tensor_slices((x, y)) train_db = train_db.shuffle(1000).map(preprocess).batch(64)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)) test_db = test_db.map(preprocess).batch(64)
sample = next(iter(train_db)) print('sample:', sample[0].shape, sample[1].shape, tf.reduce_min(sample[0]), tf.reduce_max(sample[0]))
def main(): conv_net = Sequential(conv_layers) conv_net.build(input_shape=[None, 32, 32, 3])
fc_net = Sequential([ layers.Dense(256, activation=tf.nn.relu), layers.Dense(128, activation=tf.nn.relu), layers.Dense(100, activation=None), ])
conv_net.build(input_shape=[None, 32, 32, 3]) fc_net.build(input_shape=[None, 512])
optimizer = optimizers.Adam(learning_rate=1e-4)
variables = conv_net.trainable_variables + fc_net.trainable_variables
for epoch in range(50): for step, (x, y) in enumerate(train_db): with tf.GradientTape() as tape: out = conv_net(x) out = tf.reshape(out, [-1, 512]) logits = fc_net(out) y_onehot = tf.one_hot(y, depth=100) loss = tf.keras.losses.categorical_crossentropy(y_onehot, logits, from_logits=True) loss = tf.reduce_mean(loss)
grads = tape.gradient(loss, variables) optimizer.apply_gradients(zip(grads, variables))
if step % 100 == 0: print(epoch, step, 'loss:', float(loss))
total_num = 0 total_correct = 0 for x, y in test_db: out = conv_net(x) out = tf.reshape(out, [-1, 512]) logits = fc_net(out) prob = tf.nn.softmax(logits, axis=1) pred = tf.argmax(prob, axis=1) pred = tf.cast(pred, dtype=tf.int32)
correct = tf.cast(tf.equal(pred, y), dtype=tf.int32) correct = tf.reduce_sum(correct)
total_num += x.shape[0] total_correct += int(correct)
acc = total_correct / total_num print(epoch, 'acc:', acc)
if __name__ == '__main__': main()
|